Experimental Robotics Lab

The Experimental Robotics Laboratory supports the design, analysis, and implementation of new robots and robot algorithms with experiment methods that are rigorous and reproducible. Hardware platforms include uninhabited aerial vehicles (both fixed-wing aircraft and rotorcraft), wheeled robots, and robotic manipulators. Long-term goals include making prosthetic devices affordable to all who need them, increasing the efficiency and safety of building construction, and lowering barriers to the use of robots for manufacturing automation by small businesses. Funding sources have included NSF, NIH, and NASA. The lab is led by Prof. Timothy Bretl (http://bretl.csl.illinois.edu/).

Contacts

Laboratory Location: B16 CSL
Faculty Member: Timothy Bretl

 

Facility and Equipment Description

AscTec Pelican Quadcopter

A small, high-payload aerial robot. It is used for research on visual-inertial navigation and control, with application to building construction monitoring.

AscTec Pelican Quadcopter
AscTec Pelican Quadcopter

Baxter Robot

A dual-arm human-sized manipulator. It is used for research on manipulation, with application to industrial manufacturing.

Baxter Robot
Baxter Robot

Jackal Robot

A wheeled robot. It is used for research on vision-based simultaneous localization and mapping.

Jackal Robot
Jackal Robot

ABB IRB 120 Robot Arms

Two industrial robot arms. They are used for research on manipulation, with application to industrial manufacturing.

ABB IRB 120 Robot Arms
ABB IRB 120 Robot Arms

Research Highlights

A LOW-COST, OPEN-SOURCE, COMPLIANT HAND FOR ENABLING SENSORIMOTOR CONTROL FOR PEOPLE WITH TRANSRADIAL AMPUTATIONS

We designed and built a low-cost, open-source prosthetic hand that enables both motor control and sensory feedback for people with transradial amputations. We integrated electromyographic pattern recognition for motor control along with contact re flexes and sensory substitution to provide feedback to the user. Compliant joints allow for robustness to impacts. The entire hand can be built for around $550 and is easy to integrate with standard sockets. This low cost makes research and development of sensorimotor prosthetic hands more accessible to researchers worldwide, while also being affordable for people with amputations in developing nations.

Prosthetic hand
Prosthetic hand

 

A new approach to manipulation of flexible objects like cables and wires

We showed that the free configuration space of an elastic rod (i.e., the set of all configurations that are both in equilibrium and not in self-collision) is path-connected. This result suggests a new approach to robotic manipulation of objects like cables and wires that is easy to implement and that works well in practice.

Rendering of flexible cables or wires
Rendering of flexible cables or wires